Design of experiments for smoke depollution of diesel engine outputs

M. CANAUD(1), F. WAHL(1), C. HELBERT(2), L. CARRARO(2)

- **(1) IFP-Lyon, BP 3, 69390 Vernaison, France**
- **(2) Ecole Nationale Supérieure des Mines de Saint-Etienne, 42023 Saint-Etienne Cedex 02**

ENBIS-EMSE 2009 Conference1st July 2009

Talk Overview

- **1. deNOx model: study case**
	- **1.NOx trap: the way it works**
	- **2.NOx trap: the mathematical formulation**
	- **3.NOx trap: experimental and simulated results**
- **2. Kriging with non linear trend (KNL)**
	- **1.Presentation**
	- **2.Kriging predictor**
	- **3. Application on deNOx model and results**
- **3. Conditioning by derivatives: improvement for KNL?**
	- **1.Presentation**
	- **2.Test model: presentation**
	- **3.Application on test model and results**
	- **4.First results on deNOx model**

Conclusions

Talk Overview

deNOx model: study case1.

- **1.NOx trap: the way it works**
- **2.NOx trap: the mathematical formulation**
- **3.NOx trap: experimental and simulated results**
- **2. Kriging with non linear trend (KNL)**
	- **1.Presentation**
	- **2.Kriging predictor**
	- **3. Application on deNOx model and results**
- **3. Conditioning by derivatives: improvement for KNL?**
	- **1.Presentation**
	- **2.Test model: presentation**
	- **3.Application on test model and results**
	- **4.First results on deNOx model**

Conclusions

1. NOx trap: the way it works

Smoke post-treatment at the diesel engine output: NO_x trap

engine output

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – 1st July 2009

1. NOx trap: the way it works

Smoke post-treatment at the diesel engine output: NOx trap

© IFP

5

Reduce pollutants emissions at the diesel engine output

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – 1st July 2009

1. NOx trap: the way it works

The NOx trap operates in two phases

- 1. NOx capture phase until saturation of active sites
- 2. NOx release phase after reducing the oxydated species

6

1. NOx trap: the way it works

The NOx trap operates in two phases

- 1. NOx capture phase until saturation of active sites
- 2. NOx release phase after reducing the oxydated species

Simplification of the problem

- • Complex system: to reduce the complexity of the problem, at first, onlycapture phase is considered
- During this phase, the kinetic model have four dominant reactions: •oxydation of CO, HC, NO et H_2

1. NOx trap: the way it works

The NOx trap operates in two phases

- 1. NOx capture phase until saturation of active sites
- 2. NOx release phase after reducing the oxydated species

Simplification of the problem

- • Complex system: to reduce the complexity of the problem, at first, onlycapture phase is considered
- During this phase, the kinetic model have four dominant reactions: •oxydation of CO, HC, NO et H_2

Kinetic model

 \Rightarrow I wo kinetic parameters for each reaction

8

2. NOx trap: the mathematical formulation

Mathematical model

The mathematical model of the NOx trap has the form,

$$
Y = f(x, \beta)
$$

where \boldsymbol{f} results from a differential equation system (ODE)

9

2. NOx trap: the mathematical formulation

Mathematical model

The mathematical model of the NOx trap has the form,

$$
Y = f(x, \beta)
$$

where f results from a differential equation system (ODE)

System inputs, denoted by *x*

On the experimental system, inputs are selected and controlled by the experimenter:

• Mass composition of five species present in the exhaust gas
 c_1, c_2, c_3, c_4, c_5
• Mass flow of gas entering in the NOx trap Ω

^c1 , c2 , c3 , c4 , c⁵

- Mass flow of gas entering in the NOx trap, Q
- \bullet Entering gas temperature \Longrightarrow increase linearly with the time

$$
x = (c_1, c_2, c_3, c_4, c_5, Q, T)^t
$$

2. NOx trap: the mathematical formulation

Mathematical model

The mathematical model of the NOx trap has the form,

$$
Y = f(x, \beta)
$$

where \boldsymbol{f} results from a differential equation system (ODE)

System inputs, denoted by *x*

On the experimental system, inputs are selected and controlled by the experimenter:

• Mass composition of five species present in the exhaust gas
 c_1, c_2, c_3, c_4, c_5
• Mass flow of gas entering in the NOx trap Ω

^c1 , c2 , c3 , c4 , c 5

- Mass flow of gas entering in the NOx trap, *Q*
- \bullet Entering gas temperature \Longrightarrow increase linearly with the time

$$
x = (c_1, c_2, c_3, c_4, c_5, Q, T)^t
$$

System outputs, denoted by *Y*

Mass composition of the three pollutants:

yHC , yNOx , yCO

3. NOx trap: experimental and simulated results

Inadequacy of the computer model

Kinetic parameter estimation from ^a learning set of 20 experiments

Important differences between computer model and experiments

Talk Overview

- **1. deNOx model: study case**
	- **1. NOx trap: the way it works**
	- **2. NOx trap: the mathematical formulation**
	- **3. NOx trap: experimental and simulated results**

2.Kriging with non linear trend (KNL)

- **1.Presentation**
- **2.Kriging predictor**
- **3. Application on deNOx model and results**
- **3. Conditioning by derivatives: improvement for KNL?**
	- **1.Presentation**
	- **2.Test model: presentation**
	- **3.Application on test model and results**
	- **4.First results on deNOx model**

Conclusions

1. Presentation

Why kriging?

- 1. To resolve the inadequacy of the mathematical model
- 2. To determine the new experimental points, through variance prediction

1. Presentation

Why kriging?

- 1. To resolve the inadequacy of the mathematical model
- 2. To determine the new experimental points, through variance prediction

Kriging with non linear trend

Differences between computer model and experiments ⁼ Gaussian process

 $y(x)=f(x,\beta) + z_{\sigma^2,\theta}(x)$

where $z_{\sigma^2\!,\theta}(x)$ is a Gaussian process such as $\,E(z(x)){=}0$ et $cov(z(x),z(x{+}h)){=}\sigma^2\!R_\theta(h)$

1. Presentation

Why kriging?

- 1. To resolve the inadequacy of the mathematical model
- 2. To determine the new experimental points, through variance prediction

Kriging with non linear trend

Differences between computer model and experiments ⁼ Gaussian process

$$
y(x)=f(x,\beta)+z_{\sigma^2,\theta}(x)
$$

where $z_{\sigma^2\!,\theta}(x)$ is a Gaussian process such as $\,E(z(x)){=}0$ et $cov(z(x),z(x{+}h)){=}\sigma^2\!R_\theta(h)$

Estimation of β*,* σ*²,* θ

- Estimation by maximum likelihood
	- The analytical formula for β is replaced by a minimization procedure

2. Kriging predictor

Kriging predictor

$$
\hat{y}(x_0) = rR^{-1}Y - (F^T R^{-1}r - f)^T (F^T R^{-1}F)^{-1} F^T R^{-1}Y
$$

Notation

- Let m be the number of design points
- $Y=(\boldsymbol{Y}_{I},...,\boldsymbol{Y}_{m})^{T}$ output observed at location $S\text{=}(S_{I},...,S_{m})^{T}$
- \bullet $x_{\textit{0}}^{}$: point to be predicted
- •*R* : correlation matrix between observations
- •*r* : correlation vector between observations and the point to be predicted
- *F=f(S,* β*)* : value of computer model at design points
- *f=f(x0,*β*)* : value of computer model at the prediction point

2. Kriging predictor

Kriging predictor

$$
\hat{y}(x_0) = rR^{-1}Y - (F^T R^{-1}r - f)^T (F^T R^{-1}F)^{-1} F^T R^{-1}Y
$$

Prediction variance

$$
\varphi(x_0) = \sigma^2 \left(1 + \left\| F^T R^{-1} r - f \right\|_{(F^T R^{-1} F)} + \left\| r \right\|_{R} \right)
$$

where $\|u\|_{-} = u^T A^{-1}$ *A* $u\|_{A} = u^T A^{-1} u$ $=$ μ μ

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – $1st$ July 2009

2. Kriging predictor

Kriging predictor

$$
\hat{y}(x_0) = rR^{-1}Y - (F^T R^{-1}r - f)^T (F^T R^{-1}F)^{-1} F^T R^{-1}Y
$$

Prediction variance

$$
\varphi(x_0) = \sigma^2 \left(1 + \left\| F^T R^{-1} r - f \right\|_{(F^T R^{-1} F)} + \left\| r \right\|_{R} \right)
$$

where
$$
||u||_A = u^T A^{-1} u
$$

Parameters estimation

Parameters are obtained by solving recursively the simultaneous equations:

$$
\hat{\beta} = \min_{\beta} (Y - F)^T R^{-1} (Y - F)
$$

$$
\hat{\sigma}^2 = (Y - F)^T R^{-1} (Y - F) / m
$$

$$
\hat{\theta} = \arg \min [\hat{\sigma}^2 | R^{-1}|^{1/m}]
$$

 \mathbb{E}

3. Application on deNOx model and results

- **Application**
- •12 experimental points are taken uniformly along the temperature for each of the 19 first experiments

•CO and HC prediction for the 20th experiment, outputs are treated independently

3. Application on the deNOx model and results

Influence of the number of design point

 \bullet HC concentration evolution prediction of the 20th experiment

• The approach is the same but 15 points are taken uniformly along the temperature instead of 12

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – $1st$ July 2009

3. Application on the deNOx model and results

Influence of the number of design point

 \bullet HC concentration evolution prediction of the 20th experiment

• The approach is the same but 15 points are taken uniformly along the temperature instead of 12

 E

Talk Overview

- **1. deNOx model: study case**
	- **1. NOx trap: the way it works**
	- **2. NOx trap: the mathematical formulation**
	- **3. NOx trap: experimental and simulated results**
- **2. Kriging with non linear trend (KNL)**
	- **1.Presentation**
	- **2.Kriging predictor**
	- **3. Application on deNOx model and results**
- **3. Conditioning by derivatives: improvement for KNL?**
	- **1.Presentation**
	- **2.Test model: presentation**
	- **3.Application on test model and results**
	- **4.First results on deNOx model**

Conclusions

1. Presentation

Notation

- \bullet Let ($s_{1},...,s_{m_{I}}$) the design points where function value is known
- Let $(v_1, ..., v_{m_2})$ the design points where partial derivative according to the first direction is known
- Exponent (1) denotes the output derivative along the first direction
- Let,

1. Presentation

Notation

- \bullet Let ($s_{1},...,s_{m_{I}}$) the design points where function value is known
- Let $(v_1, ..., v_{m_2})$ the design points where partial derivative according to the first direction is known
- Exponent (1) denotes the output derivative along the first direction
- Let,

 $Y = (Y_1, ..., Y_{m_1}, Y_1^{(1)}, ..., Y_{m_2}^{(1)})^T$ and $F = (f(s_1, \beta), ..., f(s_{m_1}, \beta), f^{(1)}(v_1, \beta), ..., f^{(1)}(v_{m_2}, \beta))^T$

Covariance structure

Gaussian spatial correlation is used, defined by,

$$
R(h) = \exp\left\{-\sum_{l=1}^{k} \theta_l h_l^2\right\}
$$

The pairwise joint covariance of $\pmb{Y}(\pmb{\ldots})$ and $\pmb{Y}^{(1)}(\pmb{\ldots})$, is given by, $_{}$ (Santner, Williams and Notz, 2003)

$$
Cov(Y(s_i), Y^{(1)}(v_j)) = \sigma^2 2\theta_1 (s_i^1 - v_j^1) R(s_i - v_j)
$$

\n
$$
Cov(Y^{(1)}(v_i), Y^{(1)}(v_j)) = \sigma^2 (2\theta_1 - 4\theta_1^2 (v_i^1 - v_j^1)^2) R(v_i - v_j)
$$

1. Presentation

Covariance matrix *C*

Covariance matrix is defined by,

$$
C = \begin{pmatrix} C_{00} & C_{01} \\ C_{01}^T & C_{11} \end{pmatrix}
$$

where:

• C_{00} is the m_1 x m_1 matrix of correlations between the elements of $Y_i,$ $\! \leq$ $\! i$ $\!\leq$ $\! m_1$

- C_{0I} is the m_I x m_2 matrix of correlations between Y_i and $Y_j^{(1)},\ I{\leq}j{\leq}m_2$
- \bullet \boldsymbol{C}_{11} is the \boldsymbol{m}_2 x \boldsymbol{m}_2 matrix of correlations between the elements of $Y_j^{(1)}$

1. Presentation

Covariance matrix *C*

Covariance matrix is defined by,

$$
C = \begin{pmatrix} C_{00} & C_{01} \\ C_{01}^T & C_{11} \end{pmatrix}
$$

where:

• C_{00} is the m_1 x m_1 matrix of correlations between the elements of $Y_i,$ $\! \leq$ $\! i$ $\!\leq$ $\! m_1$

- C_{0I} is the m_I x m_2 matrix of correlations between Y_i and $Y_j^{(1)},\ I{\leq}j{\leq}m_2$
- \bullet \boldsymbol{C}_{11} is the \boldsymbol{m}_2 x \boldsymbol{m}_2 matrix of correlations between the elements of $Y_j^{(1)}$

Kriging equations

Kriging equations are the same as for kriging with non linear trend

2. Test model: presentation

Application on two model

Kriging with non linear trend conditioning by derivatives (KNLD) is applied on:

- the test model: similar to study case but simpler and totally mastered
- the deNOx model

2. Test model: presentation

Application on two model

Kriging with non linear trend conditioning by derivatives (KNLD) is applied on:

- the test model: similar to study case but simpler and totally mastered
- the deNOx model

Equations system: represents the experimental system

Langmuir-Hinshelwood formalization:

$$
\begin{cases}\n\frac{d[A]}{dt} = -\frac{k_0 \exp\{-\frac{E}{RT}\}[A]}{1 + b_0 \exp\{-\frac{\Delta H}{RT}\}[A]}\n\end{cases}
$$
\n
$$
[A]_0 = A_0
$$

Let $g(x)$ be the model governed by this system

2. Test model: presentation

Application on two model

Kriging with non linear trend conditioning by derivatives (KNLD) is applied on:

- the test model: similar to study case but simpler and totally mastered
- the deNOx model

Equations system: represents the experimental system

Langmuir-Hinshelwood formalization:

$$
\begin{cases}\n\frac{d[A]}{dt} = -\frac{k_0 \exp\{-\frac{E}{RT}\}[A]}{1 + b_0 \exp\{-\frac{\Delta H}{RT}\}[A]}\n\end{cases}
$$
\n
$$
[A]_0 = A_0
$$

Let $g(x)$ be the model governed by this system

Kinetic parameters choice

• *g(x)* depends on ^a hidden kinetic parameter vector, ξ *={k^o, E, bo,* ∆*H}*,

• ξ has been chosen to conduct to very different concentration evolutions of A depending on the temperatureEnvironner

2. Test model: presentation

Second system: represents the mathematical model

Consider the following simple kinetic system:

$$
\begin{cases}\n\frac{d[A]}{dt} = -k'_0 \exp\{-\frac{E'}{RT}\}[A] \\
[A]_0 = A_0\n\end{cases}
$$

Let *f(x,*β*)* be the model governed by this system, where β*={ko',E'}*

2. Test model: presentation

Second system: represents the mathematical model

Consider the following simple kinetic system:

$$
\begin{cases}\n\frac{d[A]}{dt} = -k'_0 \exp\{-\frac{E'}{RT}\}[A] \\
[A]_0 = A_0\n\end{cases}
$$

Let *f(x,*β*)* be the model governed by this system, where β*={ko',E'}*

Objective

Determine parametersβ*,* ^σ*²,* θ such as:

 $g(x)=f(x, \beta)+z_{\sigma^2,\theta}$

2. Test model: presentation

Simulations

Simulations for three different A_{0} at a fixed time (80 seconds)

Solid line: 'experimental results' (function g), Dotted line: 'estimated model' (f)

3. Application on test model and results

Application

Test model prediction by KNL (red dotted line) and kriging with non linear trend conditioning by derivatives (red solid line) compared to experimental results (blue line)

3 initial concentration, 8 fixed time and 10 temperatures on each simulation

4. First results on deNOx model

Application

- **HC concentration evolution prediction of the 20th experiment by KNL and kriging with non linear trend conditioning by derivatives (KNLD)**
- **15 experimental points taken uniformly along the temperature on the 19 first experiments**
- **On each experimental point function and derivative values are supposed to be known**

Talk Overview

- **1. deNOx model: study case**
	- **1. NOx trap: the way it works**
	- **2. NOx trap: the mathematical formulation**
	- **3. NOx trap: experimental and simulated results**
- **2. Kriging with non linear trend (KNL)**
	- **1.Presentation**
	- **2.Kriging predictor**
	- **3. Application on deNOx model and results**
- **3. Conditioning by derivatives: improvement for KNL?**
	- **1.Presentation**
	- **2.Test model: presentation**
	- **3.Application on test model and results**
	- **4.First results on deNOx model**

Conclusions

Points presented

- 1. Kriging with non linear trend (KNL)
- 2. Kriging with non linear trend conditioning by derivatives (KNLD)

Points presented

- 1. Kriging with non linear trend (KNL)
- 2. Kriging with non linear trend conditioning by derivatives (KNLD)

1. KNL: problems

- Numerical problems when number of design sites increases
	- Oscillations problems where response is less variable

Points presented

- 1. Kriging with non linear trend (KNL)
- 2. Kriging with non linear trend conditioning by derivatives (KNLD)

1. KNL: problems

- Numerical problems when number of design sites increases
	- Oscillations problems where response is less variable
- **2. KNLD: improvement for KNL**
	- Prediction is better, i.e. oscillations are less strong
	- •Model is too constrained

Points presented

- 1. Kriging with non linear trend (KNL)
- 2. Kriging with non linear trend conditioning by derivatives (KNLD)

1. KNL: problems

- Numerical problems when number of design sites increases
	- Oscillations problems where response is less variable

2. KNLD: improvement for KNL

- Prediction is better, i.e. oscillations are less strong
- •Model is too constrained

Perspectives

© IFP

1. Take into account derivative information only on both, initial and final stages for KNLD

Environne

- 2. Determine an experimental design through variance prediction
- 3. Compare this experimental design to classical ones

ENBIS-EMSE 2009 Conference

Post-traitement des fumées en sortie des moteurs Diesel : Thank you for your attention!

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – $1st$ July 2009

ENBIS-EMSE 2009 Conference

ENBIS-EMSE 2009 Conference

Application

 Test model prediction by KNL (red dotted line) and kriging with non linear trend conditioning by derivatives (red solid line) compared to experimental results (blue line)

3 initial concentration, 8 fixed time and 10 temperatures on each simulation

