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Talk Overview
1. deNOx model: study case

1. NOx trap: the way it works
2. NOx trap: the mathematical formulation
3. NOx trap: experimental and simulated results

2. Kriging with non linear trend (KNL)
1. Presentation
2. Kriging predictor
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3. Application on deNOx model and results

3. Conditioning by derivatives: improvement for KNL?
1. Presentation
2. Test model: presentation
3. Application on test model and results
4. First results on deNOx model

Conclusions
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1. deNOx model: study case

Smoke post-treatment at the diesel engine output: 

NOx trap

1. NOx trap: the way it works
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Reduce pollutants emissions at  the diesel 
engine output
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1. deNOx model: study case
1. NOx trap: the way it works

1. NOx capture phase until saturation of active sites
2. NOx release phase after reducing the oxydated species

The NOx trap operates in two phases 
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• Complex system: to reduce the complexity of the problem, at first, only
capture phase is considered

• During this phase, the kinetic model have four dominant reactions:

Simplification of the problem
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1. deNOx model: study case
1. NOx trap: the way it works

• Complex system: to reduce the complexity of the problem, at first, only
capture phase is considered

• During this phase, the kinetic model have four dominant reactions:

Simplification of the problem

1. NOx capture phase until saturation of active sites
2. NOx release phase after reducing the oxydated species

The NOx trap operates in two phases 

©
 IF

P

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – 1st July 20098

Kinetic model

Two kinetic parameters for each reaction

oxydation of CO, HC, NO et H2



The mathematical model of the NOx trap has the form,
Mathematical model 

1. deNOx model: study case
2. NOx trap: the mathematical formulation

Y = f ( x,β )

where f results from a differential equation system (ODE)
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System inputs, denoted by x

1. deNOx model: study case
2. NOx trap: the mathematical formulation

• Mass composition of five species present in the exhaust gas
On the experimental system, inputs are selected and controlled by the experimenter:

The mathematical model of the NOx trap has the form,
Mathematical model 

Y = f ( x,β )

where f results from a differential equation system (ODE)
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• Mass composition of five species present in the exhaust gas

• Mass flow of gas entering in the NOx trap, Q

• Entering gas temperature increase linearly with the time

c1 , c2 , c3 , c4 , c5

( ) tTQcccccx ,,,,,, 54321=
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System outputs, denoted by Y

Mass composition of the three pollutants:
yHC , yNOx , yCO

• Mass composition of five species present in the exhaust gas

• Mass flow of gas entering in the NOx trap, Q

• Entering gas temperature increase linearly with the time

c1 , c2 , c3 , c4 , c5

( ) tTQcccccx ,,,,,, 54321=



1. deNOx model: study case
3. NOx trap: experimental and simulated results
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Kinetic parameter estimation from a learning set of 20 experiments
Inadequacy of the computer model

Important differences between computer model and experiments
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3. Application on deNOx model and results

3. Conditioning by derivatives: improvement for KNL?
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4. First results on deNOx model
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2. Kriging with non linear trend (KNL)
1. Presentation

Why kriging?
1. To resolve the inadequacy of the mathematical model

2. To determine the new experimental points, through variance prediction
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2. Kriging with non linear trend (KNL)
1. Presentation

Differences between computer model and experiments = Gaussian process

y(x)=f (x,β ) + z (x)

Kriging with non linear trend

Why kriging?
1. To resolve the inadequacy of the mathematical model

2. To determine the new experimental points, through variance prediction
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y(x)=f (x,β ) + zσ²,θ (x)

where zσ²,θ (x) is a Gaussian process such as E(z(x))=0et cov(z(x),z(x+h))=σ²Rθ(h)
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1. Presentation
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y(x)=f (x,β ) + zσ²,θ (x)

where zσ²,θ (x) is a Gaussian process such as E(z(x))=0et cov(z(x),z(x+h))=σ²Rθ(h)

Estimation of β, σ², θ
• Estimation by maximum likelihood
• The analytical formula for β is replaced by a minimization procedure



2. Kriging with non linear trend (KNL)
2. Kriging predictor

Notation
• Let m be the number of design points
• Y=(Y1,...,Ym)T output observed at location S=(S1,...,Sm)T

• x : point to be predicted

Kriging predictor

YRFFRFfrRFYrRxy TTTT 11111
0 )()()(ˆ −−−−− −−=
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• x0 : point to be predicted
• R : correlation matrix between observations
• r : correlation vector between observations and the point to be predicted
• F=f(S,β) : value of computer model at design points
• f=f(x0,β) : value of computer model at the prediction point



2. Kriging with non linear trend (KNL)
2. Kriging predictor

Kriging predictor

YRFFRFfrRFYrRxy TTTT 11111
0 )()()(ˆ −−−−− −−=

Prediction variance
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( )( ) RF R F

where 1T
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Parameters estimation
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Parameters are obtained by solving recursively the simultaneous equations:
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2. Kriging with non linear trend (KNL)
3. Application on deNOx model and results

Application
•12 experimental points are taken uniformly along the temperature for each of the 
19 first experiments

•CO and HC prediction for the 20th experiment, outputs are treated independently
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Oscillations appear on the initial and final stage



2. Kriging with non linear trend (KNL)
3. Application on the deNOx model and results

Influence of the number of design point
• HC concentration evolution prediction of the 20th experiment

• The approach is the same but 15 points are taken uniformly along the temperature 
instead of 12

©
 IF

P

M. CANAUD – ENBIS 2009 – Design of experiments for smoke depollution of diesel engine outputs – 1st July 200921

Oscillations are still present

with 12 pts with 15 pts
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with 12 pts with 15 pts

On both, initial and final stage, derivatives are constant
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3. Application on deNOx model and results

3. Conditioning by derivatives: improvement for KNL?
1. Presentation
2. Test model: presentation
3. Application on test model and results
4. First results on deNOx model

Conclusions



3. Conditioning by derivatives: improvement for KNL?

1. Presentation
Notation

• Let (s1,…,sm1 
) the design points where function value is known

• Let (v1,…,vm2
) the design points where partial derivative according to the first direction is  

known

• Exponent (1) denotes the output derivative along the first direction

• Let,
T)1()1( ββββ ……=
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Covariance structure

Gaussian spatial correlation is used, defined by,

The pairwise joint covariance of Y(.) and Y(1)(.), is given by, (Santner, Williams and Notz, 2003)
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3. Conditioning by derivatives: improvement for KNL?

1. Presentation
Covariance matrix C

Covariance matrix is defined by, 

where:

• C is the m xm matrix of correlations between the elements of Y ,1≤ i≤ m

00 01

01 11
T

C C
C

C C

 
=  
 
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• C00 is the m1xm1 matrix of correlations between the elements of Yi ,1≤ i≤ m1

• C01 is the m1xm2 matrix of correlations between Yi and Yj
(1), 1≤ j≤ m2

• C11 is the m2xm2 matrix of correlations between the elements of Yj
(1)
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Kriging equations

Kriging equations are the same as for kriging with non linear trend

• C00 is the m1xm1 matrix of correlations between the elements of Yi ,1≤ i≤ m1

• C01 is the m1xm2 matrix of correlations between Yi and Yj
(1), 1≤ j≤ m2

• C11 is the m2xm2 matrix of correlations between the elements of Yj
(1)



3. Conditioning by derivatives: improvement for KNL?

2. Test model: presentation
Application on two model 

Kriging with non linear trend conditioning by derivatives (KNLD) is applied on:

• the test model: similar to study case but simpler and totally mastered
• the deNOx model
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3. Conditioning by derivatives: improvement for KNL?

2. Test model: presentation

Langmuir-Hinshelwood formalization:

Equations system: represents the experimental system

Application on two model 
Kriging with non linear trend conditioning by derivatives (KNLD) is applied on:

• the test model: similar to study case but simpler and totally mastered
• the deNOx model
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Let  g(x) be the model governed by this system
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Kinetic parameters choice

• g(x) depends on a hidden kinetic parameter vector, ξξξξ ={ko, E, bo,∆H},

• ξ has been chosen to conduct to very different concentration evolutions of A
depending on the temperature

Let  g(x) be the model governed by this system



3. Conditioning by derivatives: improvement for KNL?

2. Test model: presentation

Consider the following simple kinetic system:

Second system: represents the mathematical model

Let f(x,β) be the model governed by this system, where β={ko’,E’}
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Let f(x,β) be the model governed by this system, where β={ko’,E’}
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Objective

Determine parameters β, σ²,θ such as:
g(x)=f(x, β)+ zσ²,θ

Let f(x,β) be the model governed by this system, where β={ko’,E’}



3. Conditioning by derivatives: improvement for KNL?

2. Test model: presentation
Simulations

Simulations for three different A0 at a fixed time (80 seconds)

Solid line: ‘experimental results’ (function g), Dotted line: ‘estimated model’ (f)
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3. Conditioning by derivatives: improvement for KNL?

3. Application on test model and results
Application

Test model prediction by KNL (red dotted line) and kriging with non linear trend conditioning 
by derivatives (red solid line) compared to experimental results (blue line)

3 initial concentration, 8 fixed time and 10 temperatures on each simulation 
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3. Conditioning by derivatives: improvement for KNL?

4. First results on deNOx model
Application

• HC concentration evolution prediction of the 20 th experiment by KNL and kriging with non linear 
trend conditioning by derivatives (KNLD)
• 15 experimental points taken uniformly along the te mperature on the 19 first experiments
• On each experimental point function and derivative values are supposed to be known
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KNL KNLD
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3. Application on deNOx model and results
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Conclusions
Points presented

1. Kriging with non linear trend (KNL)
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Conclusions
Points presented

1. Kriging with non linear trend (KNL)

2. Kriging with non linear trend conditioning by derivatives (KNLD)

1. KNL: problems  
• Numerical problems when number of design sites increases
• Oscillations problems where response is less variable
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2. KNLD: improvement for KNL
• Prediction is better, i.e. oscillations are less strong

• Model is too constrained
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2. KNLD: improvement for KNL
• Prediction is better, i.e. oscillations are less strong

• Model is too constrained

Perspectives

1. Take into account derivative information only on both, initial and final stages 
for KNLD

2. Determine an experimental design through variance prediction

3. Compare this experimental design to classical ones
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Post-traitement des fumées en sortie des moteurs Diesel : 

Piège à NOx
Thank you for your attention!
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Piège à NOx
Thank you for your attention!
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Application

Test model prediction by KNL (red dotted line) and kriging with non linear trend conditioning 
by derivatives (red solid line) compared to experimental results (blue line)

3 initial concentration, 8 fixed time and 10 temperatures on each simulation 
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